Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Large-amplitude electrostatic fluctuations are routinely observed by spacecraft upon traversal of collisionless shocks in the heliosphere. Kinetic simulations of shocks have struggled to reproduce the amplitude of such fluctuations, complicating efforts to un- derstand their influence on energy dissipation and shock structure. In this paper, 1D particle-in-cell simulations with realistic proton-to-electron mass ratio are used to show that in cases with upstream electron temperature Te exceeding the ion temperature Ti, the magnitude of the fluctuations increases with the electron plasma-to-cyclotron frequency ratio ωpe/Ωce, reaching realistic values at ωpe/Ωce ≳ 30. The large-amplitude fluctuations in the simulations are shown to be associated with electrostatic solitary structures, such as ion phase-space holes. In the cases where upstream temperature ratio is reversed, the magnitude of the fluctuations remains small.more » « lessFree, publicly-accessible full text available October 8, 2026
- 
            Free, publicly-accessible full text available April 28, 2026
- 
            Abstract On 24 April 2023, an ICME reached Earth's orbit. The solar wind density dropped to 0.3 amu/cc while the IMF strength was about 25 nT. As a result, the solar wind flow transitions to a sub‐Alfvénic state with an Alfvén Mach number of 0.4. We carry out global magnetohydrodynamic simulations to investigate the responses of Earth's magnetosphere to the ICME ejecta. The results show the formation of Alfvén wings as the solar wind becomes sub‐Alfvénic. Furthermore, the sub‐Alfvénic period was characterized by the dominance of the IMF component, causing the Alfvén wings to extend toward the dawn and dusk flanks. We investigate the global magnetospheric convection of this sub‐ Alfvénic case and find that the overall convection is mediated by the Alfvén wings, while the magnetic field convection in inner magnetosphere is similar to the super‐Alfvénic case.more » « lessFree, publicly-accessible full text available March 28, 2026
- 
            Free, publicly-accessible full text available January 1, 2026
- 
            Mai, P M (Ed.)ABSTRACT Detecting offshore earthquakes in real time is challenging for traditional land-based seismic networks due to insufficient station coverage. Application of distributed acoustic sensing (DAS) to submarine cables has the potential to extend the reach of seismic networks and thereby improve real-time earthquake detection and earthquake early warning (EEW). We present a complete workflow of a modified point-source EEW algorithm, which includes a machine-learning-based model for P- and S-wave phase picking, a grid-search location method, and a locally calibrated empirical magnitude estimation equation. Examples are shown with offshore earthquakes from the SeaFOAM DAS project using a 52-km-long submarine cable in Monterey Bay, California, demonstrating the robustness of the proposed workflow. When comparing to the current onshore network, we can expect up to 6 s additional warning time for earthquakes in the offshore San Gregorio fault zone, representing a substantial improvement to the existing ShakeAlert EEW system.more » « lessFree, publicly-accessible full text available January 30, 2026
- 
            The widespread application of electrodialysis is constrained by the high cost of ion exchange membranes, necessitating the development of affordable alternatives. This study focuses on the fabrication and performance evaluation of cation exchange membranes made from polyethersulfone (PES) and sulfonated polyethersulfone (sPES). Membranes were synthesized through phase inversion with varying solvent evaporation times, using N-Methyl-2-Pyrrolidone (NMP) as the solvent. The structural and functional modifications were confirmed using FTIR, XPS, and AFM techniques. Performance tests identified optimal electrodialysis results for PES membranes with a 3 h solvent evaporation time and for sPES membranes with a 1 h evaporation time. Under varying operational conditions, including applied voltage, flow rates, and feed solutions, sPES membranes demonstrated superior performance, underscoring their potential for cost-effective brackish water desalination applications.more » « lessFree, publicly-accessible full text available January 1, 2026
- 
            Free, publicly-accessible full text available January 1, 2026
- 
            Blaser, Martin J (Ed.)ABSTRACT Haemophilus ducreyicauses the genital ulcer disease chancroid and cutaneous ulcers in children. To study its pathogenesis, we developed a human challenge model in which we infect the skin on the upper arm of human volunteers withH. ducreyito the pustular stage of disease. The model has been used to define lesional architecture, describe the immune infiltrate into the infected sites using flow cytometry, and explore the molecular basis of the immune response using bulk RNA-seq. Here, we used single cell RNA-seq (scRNA-seq) and spatial transcriptomics to simultaneously characterize multiple cell types within infected human skin and determine the cellular origin of differentially expressed transcripts that we had previously identified by bulk RNA-seq. We obtained paired biopsies of pustules and wounded (mock infected) sites from five volunteers for scRNA-seq. We identified 13 major cell types, including T- and NK-like cells, macrophages, dendritic cells, as well as other cell types typically found in the skin. Immune cell types were enriched in pustules, and some subtypes within the major cell types were exclusive to pustules. Sufficient tissue specimens for spatial transcriptomics were available from four of the volunteers. T- and NK-like cells were highly associated with multiple antigen presentation cell types. In pustules, type I interferon stimulation was high in areas that were high in antigen presentation—especially in macrophages near the abscess—compared to wounds. Together, our data provide a high-resolution view of the cellular immune response to the infection of the skin with a human pathogen.IMPORTANCEA high-resolution view of the immune infiltrate due to infection with an extracellular bacterial pathogen in human skin has not yet been defined. Here, we used the human skin pathogenHaemophilus ducreyiin a human challenge model to identify on a single cell level the types of cells that are present in volunteers who fail to spontaneously clear infection and form pustules. We identified 13 major cell types. Immune cells and immune-activated stromal cells were enriched in pustules compared to wounded (mock infected) sites. Pustules formed despite the expression of multiple pro-inflammatory cytokines, such as IL-1β and type I interferon. Interferon stimulation was most evident in macrophages, which were proximal to the abscess. The pro-inflammatory response within the pustule may be tempered by regulatory T cells and cells that express indoleamine 2,3-dioxygenase, leading to failure of the immune system to clearH. ducreyi.more » « lessFree, publicly-accessible full text available March 12, 2026
- 
            We give the first almost-linear total time algorithm for deciding if a flow of cost at most $$F$$ still exists in a directed graph, with edge costs and capacities, undergoing decremental updates, i.e., edge deletions, capacity decreases, and cost increases. This implies almost-linear time algorithms for approximating the minimum-cost flow value and s-t distance on such decremental graphs. Our framework additionally allows us to maintain decremental strongly connected components in almost-linear time deterministically. These algorithms also improve over the current best known runtimes for statically computing minimum-cost flow, in both the randomized and deterministic settings. We obtain our algorithms by taking the dual perspective, which yields cut-based algorithms. More precisely, our algorithm computes the flow via a sequence of $$m^{1+o(1)}$$-dynamic min-ratio cut problems, the dual analog of the dynamic min-ratio cycle problem that underlies recent fast algorithms for minimum-cost flow. Our main technical contribution is a new data structure that returns an approximately optimal min-ratio cut in amortized $$m^{o(1)}$$ time by maintaining a tree-cut sparsifier. This is achieved by devising a new algorithm to maintain the dynamic expander hierarchy of [Goranci-Racke-Saranurak-Tan, SODA 2021] that also works in capacitated graphs. All our algorithms are deterministic, though they can be sped up further using randomized techniques while still working against an adaptive adversary.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
